Physical activity is the key determinant of skeletal muscle mitochondrial function in type 2 diabetes.
نویسندگان
چکیده
CONTEXT Conflicting data exist on mitochondrial function and physical activity in type 2 diabetes mellitus (T2DM) development. OBJECTIVE The aim was to assess mitochondrial function at different stages during T2DM development in combination with physical exercise in longstanding T2DM patients. DESIGN AND METHODS We performed cross-sectional analysis of skeletal muscle from 12 prediabetic 11 longstanding T2DM male subjects and 12 male controls matched by age and body mass index. INTERVENTION One-year intrasubject controlled supervised exercise training intervention was done in longstanding T2DM patients. MAIN OUTCOME MEASUREMENTS Extensive ex vivo analyses of mitochondrial quality, quantity, and function were collected and combined with global gene expression analysis and in vivo ATP production capacity after 1 yr of training. RESULTS Mitochondrial density, complex I activity, and the expression of Krebs cycle and oxidative phosphorylation system-related genes were lower in longstanding T2DM subjects but not in prediabetic subjects compared with controls. This indicated a reduced capacity to generate ATP in longstanding T2DM patients only. Gene expression analysis in prediabetic subjects suggested a switch from carbohydrate toward lipid as an energy source. One year of exercise training raised in vivo skeletal muscle ATP production capacity by 21 ± 2% with an increased trend in mitochondrial density and complex I activity. In addition, expression levels of β-oxidation, Krebs cycle, and oxidative phosphorylation system-related genes were higher after exercise training. CONCLUSIONS Mitochondrial dysfunction is apparent only in inactive longstanding T2DM patients, which suggests that mitochondrial function and insulin resistance do not depend on each other. Prolonged exercise training can, at least partly, reverse the mitochondrial impairments associated with the longstanding diabetic state.
منابع مشابه
Responses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملChanges in Mitochondrial Dynamic Factors (mfn2 and drp1) Following High Intensity Interval Training and Moderate Intensity Continuous Training in Obese Male Rats
Objective: Mitochondrial content and function are important determinants of oxidative capacity and metabolic efficiency of skeletal muscle tissue. The aim of this study was to investigate the changes in mitochondrial dynamic factors (mfn2 and drp1) following high intensity interval training (HIIT) and moderate intensity continuous training (MICT) in obese male rats. Materials and Methods: In t...
متن کاملThe effect of phytochemical compounds on indicators of oxidative stress, inflammation and skeletal muscle damage caused by physical activity
Physical activities are associated with increased production of reactive oxygen species. The production of reactive oxygen species is dependent of the intensity, duration and type of activity. Although the physiological amounts of reactive oxygen species are necessary to regulate cell reactions, their excessive production can cause numerous damages to the structure and function of cells and wea...
متن کاملThe Effect of Resistance Training and Endothelial Stem Cell Injection on Βeta-Actin, Phosphorylated and Total AKT of Skeletal Muscle in Type 1 Diabetic Rats
Background: Type 1 diabetes is associated with decreased skeletal muscle capillary and improper regulation of angiogenesis pathways in skeletal muscle. This research intended to study the effect of resistance training and endothelial stem cell injection on βeta-actin, phosphorylated and total AKT of skeletal muscle in type 1 diabetic rats. Methods: In this experimental study, 36 male Wistar ra...
متن کاملRelationship between Quality of Life and Cardiorespiratory Endurance in Patients with Type 2 Diabetes
Background & Aims: Diabetes is a metabolic disease characterized by chronic hyperglycemia and impaired metabolism of carbohydrates, lipids and proteins. This disease is caused by defects in insulin secretion, insulin function, or both (1, 2). This chronic disease can have serious short-term and long-term consequences that affect the health and quality of life (QOL) of patients (3). Type 2 diabe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical endocrinology and metabolism
دوره 97 9 شماره
صفحات -
تاریخ انتشار 2012